Physics A

Advanced GCE H558

Mark Scheme for the Units

January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Physics A (H558)

Advanced Subsidiary GCE Physics (H158)

MARK SCHEMES FOR THE UNITS
Unit/Content Page
G481 Mechanics 1
Grade Thresholds 8

G481 Mechanics

Question			Expected Answers	Marks	Additional Guidance
1	(a)		A quantity that has (both) magnitude / size and direction	B1	Not 'A quantity that has direction'
	(b)		Circled /underlined quantities are: acceleration, displacement and weight	B1	Note: All three need to be identified for a mark
	(c)	(i)	Constant / steady / uniform acceleration (up to 4 s) Or Velocity increases at a steady / constant / uniform rate Or Has acceleration of $3.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Constant / steady / uniform velocity (after 4 s) Or Zero acceleration Or Travels at a velocity of $24\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1 B1	Not Accelerates up to 4 s / 'uniform motion' for the first B1 mark Not 'Accelerates at a constant rate'. Allow: ‘speed' instead of velocity Allow: 2 mark for 'Constant acceleration and then constant speed / velocity'
		(ii)	$\begin{aligned} & \text { distance = area (under graph) } \\ & \text { distance = } 68(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: The C1 mark is for... distance $=\frac{1}{2}(10+24) \times 4.0$ Allow: Bald $68(\mathrm{~m})$ scores 2 marks Bald $\frac{1}{2}(4 \times 14)$ or $28(\mathrm{~m})$ scores 1 mark for 'area of triangle'
		$\begin{array}{\|l} \hline \text { (iii) } \\ 1 \\ \hline \end{array}$	Answer in the range: 1.1 to 1.2 (s)	B1	
		(iii)	Same areas under graphs $\begin{aligned} & 14 t=10 t+\left(0.5 \times 3.5 \times t^{2}\right) \\ & t=2.28(\mathrm{~s}) \approx 2.3(\mathrm{~s}) \end{aligned}$	C1 A1	Note: The C1 mark is for substitution Allow: Bald 2.3 (s) scores 2 marks Allow: Bald ' $t=2 \times$ (iii)1.' Scores 2 marks
			Total	9	

Question			Expected Answers	Marks	Additional Guidance
3	(a)		(Force is 1 N) when a $\mathbf{1} \mathbf{~ k g}$ mass has an acceleration of $\mathbf{1 ~ m ~ s}-\underline{-2}$	B1	Not: ' 1 kg and $1 \mathrm{~m} \underline{\mathbf{s}}^{-1}$, Allow: $(1 \mathrm{~N}=) \underline{\mathbf{1 k g}} \times \mathbf{1 \mathrm { m } \mathrm { s } ^ { - 2 }}$
	(b)		The mass of particles increases (at its speed gets closer to the speed of light)	B1	Not: 'weight of particle increases' Not: 'mass changes / different'
	(c)	(i)	$\begin{aligned} & \text { net force }=120(\mathrm{~N}) \\ & a=\frac{120}{900} \\ & a=0.13\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 A1	Note: Bald answer scores 2 marks; answer must be 2 sf or more
		(ii)	The drag force changes with speed / acceleration is not constant	B1	
	(d)		$\begin{aligned} & F=72 \times 1.4(=100.8 \mathrm{~N}) \quad / \text { weight }=72 \times 9.81(= \\ & 706.32 \mathrm{~N}) \\ & T=(72 \times 9.81)+(72 \times 1.4) \\ & T=807(\mathrm{~N}) \text { or } 810(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \text { A1 } \end{aligned}$	Note: Bald $101(\mathrm{~N})$ or $706(\mathrm{~N})$ scores 1 mark Note: Bald answer scores 3 marks Bald 605.52 to at least 2 sf scores 1 mark
			Total	8	

Question			Expected Answers	Marks	Additional Guidance
5	(a)		$\begin{aligned} & F_{H}=20 \cos 38=15.76 \approx 15.8(\mathrm{~N}) \\ & F_{V}=20 \sin 38=12.31 \approx 12.3(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: 2 sf answers of $16(\mathrm{~N})$ and 12 (N) Allow: 1 mark if vertical and horizontal components have been interchanged
	(b)	(i)	```net force vertically = 0 / weight = upward forces weight = 12.3+12.3 weight = 24.6 (N) \approx25 (N) Or correct triangle of forces diagram correct determination of weight weight =24.6 (N) \approx25(N)```	C1 C1 A0 C1 C1 A0	Possible ecf from F_{V} value from (a) At least one label needed (e.g: 20, correct angle, etc) - arrows not needed Weight in the range $22-27(\mathrm{~N})$
		(ii)	$\begin{aligned} & \text { mass }=\frac{25}{9.81}=2.55(\mathrm{~kg}) \\ & \text { density }=\frac{2.55}{2.9 \times 10^{-4}} \\ & \text { density }=8.8 \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 C1 A1	Note: 2.51 kg if 24.6 N is used Note: 'weight/volume' scores zero Note: Answer is 8.7×10^{3} if 2.51 kg is used Allow: 2 marks if $g=10$ used and $25 \mathrm{~N} \rightarrow 2.5 \mathrm{~kg} \therefore \rho=8620(\mathrm{~kg} \mathrm{~m}-$ ${ }^{3}$) Note: Bald 8.7×10^{3} or 8.8×10^{3} scores 3 marks Allow: 1 mark if 20 N is used instead of 25 N - this gives 7030 (kg m^{-3})
			Total	7	

Question			Expected Answers	Marks	Additional Guidance
6	(a)		stopping distance = thinking distance + braking distance	B1	
	(b)		Any two factors from: speed, mass, condition of tyres, condition of brakes, condition of road, gradient of road For each factor, correct description of how braking distance is affected E.g: - Greater speed means greater distance Or distance \propto speed 2 (ora) - Greater mass means greater distance Or distance \propto mass (ora) - Worn tyres / brakes implies less friction therefore greater distance (ora) - Wet / slippery / icy road means less friction therefore greater distance (ora) - Uphill means shorter distance (ora)	$\begin{aligned} & \mathrm{B} 1 \times 2 \\ & \mathrm{~B} 1 \times 2 \end{aligned}$	Allow: KE if neither mass nor speed is mentioned. For description marks, reference to 'distance' instead of 'braking distance' is fine For $1^{\text {st }}$ bullet point allow reference to kinetic energy Allow: 'more' or 'longer' instead of 'greater' when referring to distance Do not allow 'grip' for friction for $3^{\text {rd }}$ and $4^{\text {th }}$ bullet points
	(c)		1. (Several) satellites used 2. Distance from (each) satellite is determined 3. Position / distance is determined using c / speed of e.m waves / radio waves / microwaves and delay time (wtte) 4. Trilateration is used to locate the position of the car Or position of car is where circles / spheres cross (wtte)	B1 B1 B1 B1	Note: The term 'satellite(s)' to be included and spelled correctly, on all occasions, to gain this first (or second) B1 mark (Deduct this mark only once.) Do not allow this $4^{\text {th }}$ mark for just a diagram of intersecting spheres / circles
			Total	9	

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{7}$	(a)		elastic potential (energy) / strain (energy) (b)	(i)	B1
strain $=\frac{0.35 \times 10^{-3}}{1.2}=2.9(2) \times 10^{-4}$	Note: The candidates do not need to include 'energy' since it is in the stem of the question Not: 'stored energy' / 'elastic energy'				
	(ii)	stress $=1.9 \times 10^{11} \times 2.92 \times 10^{-4}$ $\left(=5.55 \times 10^{7} \mathrm{~Pa}\right)$ tension $=5.55 \times 10^{7} \times 1.4 \times 10^{-7}$ tension $=7.8(\mathrm{~N})$	C1	Possible ecf from b(i)	
(c)	(i) $\mathbf{1}$	$10^{-9}(\mathrm{~m})$	A1	Allow: Bald answer scores 2 marks	

Grade Thresholds

Advanced GCE Physics A (H158/H558)
January 2009 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
G481	Raw	60	42	37	32	27	23	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

No aggregation was available in this session.
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

